User’s guide for the APOLLO procedure (version 1.1)

Arnau Folch (afolch@ov.ingv.it)
Antonio Costa (costaQov.ingv.it)
Giovanni Macedonio (macedon@ov.ingv.it)

Istituto Nazionale di Geofisica e Vulcanologia
Sezione " Osservatorio Vesuviano”
Via Diocleziano 326 1-80124 Napoli, Italy

January 2008

Contents

1 Foreground

1.1 About thismanual e
1.2 Introduction e e
1.3 Overview of the APOLLO procedure
1.4 Download and installation

2 Generation of a meteorological database

2.1 Overview e
2.2 Description of programs e
2.2.1 The program GEOINP
2.2.2 The program MESOINP e
2.2.3 The program CALMETINP it
2.2.4 The program CALMETt v v i i vttt e et e e e e e
2.2.5 The program BUILDDBS
2.2.6 The program POSTPDBS
2.3 The database input file.
2.4 The database script files L

Run generation

3.1 Overview
3.2 Generation of a granulometry file. The program SETGRANUM
3.3 Generation of a source file. The program SETSRC

3.4 Fallout models
3.4.1 HazmAPmodel
342 FALL3D model
343 TeEPHRAmodel L.

35 Theruninputfile.

3.6 Therunscriptfiles

Postprocess of models

4.1 Overview

4.2 The program MODELPOSTP

The library LIBAPOLLO

5.1 Routines to read an input control file
5.2 Routines to read a database
5.3 Routines to read a source file
5.4 Routines to read a granulometry file
5.5 Routines to read a wind profile file
5.6 Routines to output model results

File formats

6.1 The terrain file format oL oL
6.2 The wind profile file format
6.3 The granulometry file format
6.4 The source file formato
6.5 The model output file format
6.6 The GRD file format
6.7 The symbols file format 0oL

The default APOLLO tree
Application example

References

1 Foreground

1.1 About this manual

This manual has been prepared by Arnau Folch and Antonio Costa. It gives general instructions
to install and run the APOLLO procedure, version 1.1. The software is freely distributed for
non-comertial purposes. The authors decline any responsability for any error or incorrect use.
Please note that this version of APOLLO is a beta version still under test. If you find any bug
please report it to us.

1.2 Introduction

Explosive volcanic eruptions can eject into the atmosphere large amounts of blocks, lapilli and
ash during sustained periods of time. These products, globally known as tephra, represent a
serious threat for communities settled around active volcanoes. It is estimated that half a billion
people live nowadays close to active volcanoes (Small and Naumann , 2001). Several tens of
cities and urban areas near volcanoes exceed one million inhabitants including, just to mention
some relevant examples, Mexico City, Tokyo, Manila, Quito, Seattle or Naples (Chester et al. |
2001). Approximately 500 airports lie within 100 km of volcanoes that have erupted during the
last hundred years, and tens of thousands of passengers fly over volcanically active regions such
as the North Pacific, which has more than 100 active volcanoes and four to five ash-producing
eruptions per year (Casadevall , 1993). These data stress the potential socio-economic impacts
of volcanoes in general, of ash fallout in particular, and highlight the relevance of an adequate
hazard assessment and risk mitigation policies. On the other hand, reliable short-term forecasts
represent a valuable aid for scientists and civil authorities to mitigate the effects of fallout on the
surrounding areas during an episode of crisis. In such a context it is essential to have accurate
models for volcanic fallout.

An increasing number of models to predict ash transport and/or the characteristics of the
resulting fallout deposits have been developed during the last decades. Simplest models are
obviously less accurate but have lower computational requirements and hence are especially
suitable to tackle inverse problems and/or to produce immediate gross predictions. In contrast,
complex models are more accurate but, in general, require more inputs (not always available),
set up times, pre and postprocess data treatment (i.e.possible involuntary manipulation errors),
computational requirements and user expertise. All these factors may preclude the efficiency
of such models during an episode of pre-eruptive crisis (or, even worst, during the course of an
eruption) because may delay the production and delivery of short-term forecasts to the decision-
making authorities. An important challenge for the modelling community is to overcome these
limitations in order to advance towards a simultaneously efficient and accurate performance of
models.

The goal of the APOLLO procedure is to facilitate the execution of fallout models by means of
an automatic acquisition and manipulation of input data, a subsequent automation of runs and
a final shared postprocess analysis. The idea is to increase performance, eliminate involuntary
human manipulation errors, speed up computing times and anticipate the scientific response
during emergencies. Moreover, another no trivial advantage is that models share inputs and
postprocess treatment through the production of maps written in portable formats which allow
for immediate comparison among outcomes from different models.

1.3 Overview of the APOLLO procedure

APOLLO (acronym for Automatic Procedure to mOdeL voLcanic ash dispersiOn) is a platform-
independent procedure designed to facilitate the execution and subsequent interpretation of
volcanic ash transport and fallout models. The APOLLO procedure is built on a series of
open-source programs that perform different tasks, generate input data needed by models and
do simple postprocessing. Three open-source fallout models, HAzZMAP , FALL3D (both serial and
parallel versions) and TEPHRA , are included in this version of APOLLO. However, the user is
not constrained to these models but can, alternatively, add other model(s) with minor modifica-
tions on the source codes. To this purpose, APOLLO contains a library (named LIBAPOLLO)
that acts as an interface between programs/models and input data files. Data from files and
databases generated by different programs included in the APOLLO procedure can be read di-
rectly through simple LibApollo routine calls (using either FORTRAN or C-C++) without having
a detailed knowledge of the file/database format.

The APOLLO procedure generates all the data needed by models, including a terrain and a
meteorological database, the definition of the source term and the granulometric distribution.
A meteorological database for a particular area contains short-term predictions, typically up to
few days, for meteorological variables (e.g. wind field, temperature, turbulence related variables,
etc.) defined at the nodes of a 3D structured grid. The meteorological database(s) is(are) ab-
solutely independent from models and can be updated automatically, typically every day as new
meteorological prognostics are available. A run can start automatically after the construction
of a meteorological database or at any user defined time (a run is mainly an scenario; it may
content several simulations from different fallout models). Whenever a fallout model runs it
simply reads the required meteorological (and, if necessary terrain) data from the database as
well as the files that define the source and the granulometric data. Clearly, the kind of data
to read varies from model to model (a model is not constrained to use the entire contents of
the database). For example, if a model assumes that the wind field is horizontally uniform it is
sufficient to use a selected value from each vertical layer of the database, for instance the average
or a manually specified profile. The gathering of data from a database is, consequently, a model
dependent step and must be implemented ad hoc for each particular model. After a run, the
last step of the procedure is to postprocess the outcomes of models in order to draw maps with
pre-defined physical quantities. All models can share the same postprocess treatment, so that
if two or more different models output the same quantity (e.g. ground deposit thickness) their
respective maps are directly comparable.

The user introduces inputs by means of short ASCII control files. There are two kinds of input
files: meteorological database input files and run input files. The formers control the parameters
that define a meteorological database (each database must have its own input file). The latter
control the parameters that define a run (each run must have its own input file). Input control
files can be modified at any time, for example, to incorporate data acquired during an on-going
eruption (e.g. measurements of granulometry or column height, estimations of the mass flow
rate, etc.). If the control input files remain unmodified models run periodically with the same
eruptive parameters but using updated meteorological predictions. The latter scenario could be
characteristic of a pre-eruptive crisis period, during which the eruptive parameters (e.g. mass
flow rate, granulometry, etc.) must necessarily be guessed based on the experience from previous
events.

Some advantages of the APOLLO procedure are:

1. Modularity. Each program of the procedure performs a specific task and runs indepen-
dently from the rest. It gives large flexibility and facilitates future modifications or addition
of new functionalities.

2. Flexibility. There is an absolute flexibility concerning the quantity of meteorological data-

bases and number of runs. For instance, different databases for different regions can coexist
and be updated with different periodicity (e.g. every 6 hours, daily, etc.). It allows, for
instance, to automate forecasts for several volcanoes or volcanic areas simultaneously. On
the other hand, there is no limit on the number of runs for a specific location (several
runs can use the same meteorological database). Thus, for example, one could consider
different runs starting at the same time instant (e.g. to model an event supposed to start
after 24 hours but considering different scenarios characterized by different mass flow rates
or column heights), different runs starting at different time instants (e.g. to model a single
scenario supposed to start after 24, 48 or 72 hours), or both.

3. Automatization. The scripts that control the flow of the procedure can be launched pe-
riodically without user intervention. It speeds up the production of results and precludes
from user manipulation errors.

4. Data sharing. All the models run using the same input data and can share also the same
postprocess. It ensures that outcomes (maps) from different models in the same run are
directly comparable.

5. Model/data independency. Models and data interface through a library (the LIBAPOLLO).
It guarantees that future changes in the formats of files will not affect models and vice-
versa.

6. Open source. All the programs of the procedure are distributed freely for non-commercial
purposes. A user can add also new models or functionalities and optionally make them
accessible.

The APOLLO procedure flows by means of simple scripts which can be launched either manually
or automatically with a user defined periodicity. The script files, located by default in the folder
scripts (see section 7 for details on the APOLLO tree structure), define the name and location
of the files and call the programs in the appropriate order. Any program is called passing the
path (including name) of the required input and output files as an argument. Output files are
created with the name and location specified by the argument.

1.4 Download and installation

Requirements: A FORTRAN and a C compiler. In addition, MPI (version 2.0) is also necessary
to run the parallel version of the FALL3D model.

e On a Unix/Linux/Mac X operating system:

1. Download the compressed file apollo-1.1.tar.gz from the APOLLO site.

2. Decompress (type “gunzip apollo-1.1.tar.gz”) and then untar (type “tar -xvf apollo-
1.1.tar”) to obtain the directory apollo.

3. Go to the folder Scripts/Master and run the script “APOLLO-Install” specifying
which compiler you want to use. This script does successive calls to the Makefiles
of the different programs and models. On a Unix/Linux/Mac X OS the “APOLLO-
Install” script assumes that either INTEL ifort or GNU gfortran as well as GNU gcc
are available (to compile using other compilers you will need to change the affected
Makefiles and launch them manually). Type:

— “APOLLO-Install fcompiler_ifort” (for INTER ifort compiler).
— “APOLLO-Install fcompiler_gfortran” (for GNU gfortran compiler).

e On a Windows operating system:

1. Download the compressed file apollo-1.1.tar.gz from the APOLLO site.
2. Decompress to obtain the directory apollo.

3. Compile the different programs and models using your favourite FORTRAN and C
compilers. No automatic installation is provided for Windows OS.

2 Generation of a meteorological database

2.1 Overview

Fallout models need meteorological data as input (simplest models may require only a verti-
cal wind field profile, more elaborated models normally need 3D time-dependent wind fields as
well as other micrometeorological variables). The APOLLO procedure builds a meteorological
database for each region of interest. A database contains the topography of the region and
relevant prognostic meteorological variables: wind field, air temperature, velocity scales, Monin-
Obukhov length, and mixing height. Discrete prognostic values for these variables at different
time instants are stored at the nodes of a 3D grid. This grid is regular (equally spaced) along
the horizontal but can have an arbitrary vertical layering. It allows to define meteorological data
grids finer within the Atmospheric Boundary Layer (ABL), where gradients of meteorological
variables are larger, and coarser at higher atmospheric levels. Models are not constrained to run
on the same grid where meteorological data are stored. Models and database inerface through
the library LIBAPOLLO, which contains routines that extract values from a database either at a
single point or at a horizontal layer.

There are two ways to construct a database. The simplest one requires a vertical profile of tem-
perature and wind speed (normally obtained from a vertical sounding). The second option, more
elaborated, is based on the program CALMET (Scire et al., 2000), an open source meteorological
processor developed and maintained by scientists of the US Atmospheric Studies Group (ASG)
which includes a diagnostic wind field generator. APOLLO takes advantage of this functional-
ity to obtain time-dependent wind and temperature fields as well as other micrometeorological
variables. Assimilating terrain information and an initial guess wind field on a coarse mesh,
CALMET (version 6.2) computes a zero-divergence wind field and other diagnostic variables on a
finer grid using a terrain following coordinate system. CALMET gives the option to use a gridded
wind as furnished by a prognostic meteorological model as the initial guess wind field. Note that
prognostic meteorological models run on significantly larger horizontal grid spacing (~100km
for synoptic models and ~10km for mesoscale models) and different vertical layering than those
of CALMET. Consequently, CALMET interpolates the guess field from the grid of the prognostic
model to its own grid.

Figure 1 illustrates the flow to create/update a meteorological database. When using the CAL-
MET option, the steps include:

1. Download the files that contain the (mesoscale) meteorological prognostics. This step is not
done by the APOLLO procedure. The user is responsible for periodic (daily) download
and storage of data (normally a set of files written in GRIB or NetCDF formats that
contain mesoscale prognostics every 3, 6 or 12 hours). The choice of a specific mesoscale
model may depend upon several factors, but the spatial coverage of the model and the
facilities to get access to data are, obviously, two determinant factors.

2. Run the CALMET processor. In order to facilitate the execution of CALMET, APOLLO
contains a set of programs (GEOINP, MESOINP, and CALMETINP, see section 2.2 for
description) that act as interfaces gathering data and creating the CALMET input files. All
these programs have to run each time meteorological data is updated.

3. Run the BUILDDBS program to construct the meteorological database either from a CAL-
MET output or from a vertical profile (in the latter case steps 1 and 2 are unnecessary).

4. Optionally, run also the program PosTPDBs that allows a simple visualization of meteo-
rological data.

Steps 2 to 4 can be performed automatically by means of the script APOLLO-Build-Dbs-
DbsName (see section 2.4).

Database input file
(FileDbsInp)
Terrain Grid of the Mesoscale
(FileTerr) mesoscale model model prognostics
(FileMesoGrid) (BaseGrib)
\ 4 h 4 \ 4 \ 4
2 M)
(FileDbsGrd) Geolnp Mesolnp CalmetInp
Y v
(FileCalGeo) (FileMesoRes) (FileCallnp)
I |
e ™
Calmet (v6.2)
(FileCalRes) (FileMet)

BuildDbs |€—
(FilesGRD) (FileDbs)
(FilesPS) PostpDbs (FileDbsLst)

Figure 1: Summary of the database construction/update flow.

2.2 Description of programs
2.2.1 The program GEOINP

DESCRIPTION: CALMET requires an input file with 2D geophysical data at ground level.
Data in this file include terrain elevation, land use type, surface parameters (surface roughness,
albedo, Bowen ratio, soil heat flux and leaf area index) and anthropogenic heat flux. The
program GEOINP (alias for GEOphysical INPut generator) extracts data from a regional terrain
file (FileTerr in Fig.1), interpolates the geophysical parameters needed by CALMET from the
terrain file to the ground nodes of the database (of the CALMET grid) and, finally, writes these
data in a CALMET readable format (FileCalGeo in Fig.1). A terrain file (see section 6.1) is
a free format ASCII file that contains data at regular spaced points. Terrain data files should
ideally cover several hundreds of kilometres around the volcano or volcanic area of interest and,
in principle, can have an arbitrary spatial resolution. The default spacing is 1km. Note that, in
general, the terrain file and the database can have different extensions and /or spatial resolutions.

The only requirement is that the domain of the database (typically of the order of 100x100 km)
must lay within the bounds of the terrain file (typically of the order of 1000x1000 km).
PROGRAM CALL: (normally included in a script file): Path of the executable + 5 arguments

“GeoInp.exe FilelLog FileDbsInp FileCalGeo FileTerr FileDbsGrd”

FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

FileDbsInp: Path (including name) of the database input file (see section 2.3).

FileCalGeo: Path (including name) of the CalGeo file. It is a GEOINP output ASCII file
that is used by CALMET as an input.

FileTerr: Path (including name) of the terrain file (see section 6.1).

FileDbsGrd: Path (including name) of the DbsGrd file. It is a GEOINP output file written
in GRD format that contains the domain (and topography) of the database. It serves just
for optional visualization purposes.

2.2.2 The program MESOINP

DESCRIPTION: The purpose of the MESOINP (alias for MESOscale INPut generator) pro-
gram is to read and decode the necessary GRIB-format files produced by the mesoscale mete-
orological models and subsequently merge them into a single ASCII file written in a CALMET
readable format. The number of GRIB files required results from the ratio between the database
time interval (selected by the user in the database input file) to the mesoscale model output time
interval. For instance, to store data for the next 48 hours using meteorological data provided
by a mesoscale model which supplies data every 6 hours it is necessary to decode up to 8 GRIB

files.

PROGRAM CALL: (normally included in a script file): Path of the executable + 6 arguments

“MesoInp.exe FileLog FileDbsInp FileMesoLst BaseGrib FileMesoGrid FileMesoRes”

FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

FiledbsInp: Path (including name) of the database input file (see section 2.3).

FileMesoLst: Path (including name) of the MesoLst file. It is a MESOINP output ASCII
file that contains run information.

BaseGrib: Path (including name but not file extension .hh.grb) of the GRIB files to be
decoded.

FileMesoGrid: Path (including name) of the file that contains the grid of the mesoscale
model.

FileMesoRes: Path (including name) of the MesoRes file. It is a MESOINP output ASCII
file that is used by CALMET as input.

10

2.2.3 The program CALMETINP

DESCRIPTION: The program CALMETINP (alias for Calmet Input file generator) writes the
CALMET control file. This file contains all the information necessary to define a CALMET run.
PROGRAM CALL: (normally included in a script file): Path of the executable + 3 arguments

“CalmetInp.exe FileLog FileDbsInp FileCallnp”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FiledbsInp: Path (including name) of the database input file (see section 2.3).

e FileCallInp: Path (including name) of the Callnp file. It is a CALMETINP output ASCII
file that is used by CALMET as input.

2.2.4 The program CALMET

DESCRIPTION: The CALMET program (see Scire et al. (2000) for details) assimilates terrain
information and an initial guess wind field on a coarse mesh to compute a zero-divergence wind
field and other diagnostic variables on a finer grid using a terrain following coordinate system.
For each time interval, the initial guess wind field (in our case the output of a meteorological
prognostic model) is first adjusted for: i) kinematic effects of terrain (lifting and acceleration
of the air flow over terrain obstacles), ii) thermodynamically generated slope flows and, iii)
blocking effects, in order to obtain, after a divergence-minimisation procedure, a step 1 mass
consistent wind field. After that, meteorological observations (if available at the time under
consideration), can be added to the step 1 field and an objective analysis procedure gives a
second intermediate field. The scheme is designed so that observations are used to correct the
step 1 wind field within a user specified radius of influence, whereas it remains unchanged at
regions where observations are unavailable. Finally, a new divergence minimisation procedure is
applied iteratively to the step 2 field until the divergence of velocity reaches a lower bound. The
final outcome of CALMET consists of values at the grid points for a zero-divergence wind field
consistent with the observations (or pseudo observations) and for other micrometeorological
variables like the Monin-Obukhov length, the friction velocity or the atmospheric boundary
layer height. The latter ones are quantities that may be later required by some fallout models
to estimate the eddy diffusivity tensor. It is important to note that the approximation of a
zero-divergence wind field assumed by CALMET is fully adequate at heights lower or close to one
kilometer (Dutton and Fichtl , 1969), although it is commonly extended up to few kilometres. In
consequence, the CALMET output field can be used confidently just for low to medium eruptive
columns.

PROGRAM CALL: (normally included in a script file): Path of the executable + 2 arguments

“Calmet62.exe FileLog FileCallInp”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileCalInp: Path (including name) of the Callnp file (CALMETINP output file).

2.2.5 The program BuiLDDBS

DESCRIPTION: This program generates the database files using as input either a veritcal
profile (sounding) plus a topography file (in format GRD) or an output of the meteorological

11

processor CALMET (version 6.2). The latter option is prefereable because CALMET generates a
3D wind field that accounts for topographic effects and determines values for micrometeorological
variables in the Atmospheric Boundary Layer (ABL).

PROGRAM CALL: (normally included in a script file): Path of the executable + 7 arguments

“BuildDbs.exe FileLog FileDbsInp FileDat FileDbs TypeData FileTop”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileDbsInp: Path (including name) of the database input file (see section 2.3).

e FileDat: Name (including path) of the meteo data file. This is either the vertical profile
file (see section 6.2) or the binary output from CALMET (version 6.2) depending on the
value of TypeData.

e FileDbs: Path (including name) of the Dbs file. It is a binary file created by the BUILD-
DBsprogram. Contains the meteorological database stored in a direct access binary file.

e TypeData: Flag to indicate the origin of meteorological data. Possibilities are PROFILE or
CALMET62.

e FileTop: Name (including path) of the GRD topography file. Only used if TypeData is
PROFILE.

2.2.6 The program PosTpPDBS

DESCRIPTION: This program does an optional simple postprocess of a database. It plots
horizontal cuts of meteorological variables (in this version only wind vector field and air tem-
perature).

PROGRAM CALL: (normally included in a script file): Path of the executable + 4 arguments

“Postpdbs.exe FileLog FileDbsInp FileDbs BaseName”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileDbsInp: Path (including name) of the database input file (see section 2.3).

e FileDbs: Path (including name) of the Dbs file. It is a binary file created by the BUILDDBS
program. Contains the meteorological database stored in a direct access binary file.

e BaseName: Path for the POSTPDBS program output files

2.3 The database input file

A database input file (see Table 1) is an ASCII file composed by a series of blocks and labels that
define all the characteristics of a database. Labels are case sensitive and can be placed in any
order within a block. Comments and extra lines can be inserted anywhere with no particular
syntax. This file controls the input parameters needed by the different programs described in
the previous section. There must exist a single input file for each meteorological database to
build /update.

Block TIME_UTC (read by the programs: GEOINP, MESOINP, CALMETINP, and BUILDDBS).
This block contains labels that define the time range of the meteorological database (in UTC
time).

12

e YEAR: Simulation year.
e MONTH: Simulation month (1-12).
e DAY: Simulation day (1-31).

e BEGIN_METEO_DATA_(HOURS_AFTER_00): Time (in A after 0000UTC for the current day) at
which meteorological data start.

e END_METEQ_DATA_(HOURS_AFTER_00): Time (in A after 0000UTC for the current day) at
which meteorological data ends. The meteo time interval should include the simulation
time interval defined by the records RUN_START_(HOURS_AFTER_00) and RUN_END_(HOURS_AFTER_00)
of the run input file (see section 3.5).

e TIME_STEP METEO_DATA_(MIN): Time step (in min) of the meteo data.

Block DATABASE_GRID (read by programs GEOINP, CALMETINP, and BUILDDBS). This
block contains labels that define the size and location of the database.

e UTM_ZONE: UTM zone code (1-60).

e UTM_HEMISPHERE: UTM hemisphere. Possibilities are N or S.

e X ORIGIN_(UTMM): z-origin of the database (bottom left corner). UTM coordinates in m.
e Y ORIGIN_(UTMM): y-origin of the database (bottom left corner). UTM coordinates in m.
e CELL_SIZE_(KM): Horizontal database cell size in km (e.g. 0.5, 1, 2, etc.).

e NX: Number of database grid cells in the z-direction (W-E direction). Coincides with the
fallout models discretization.

e NY: Number of database grid cells in the y-direction (S-N direction). Coincides with the
fallout models discretization.

e ZLAYER_(M): Heights (in m) of the database z-layers. If TypeData is PROFILE then BUILD-
DBs interpolates the measured values of velocity and temperature at these heights. If
TypeData is CALMET62 the heights represent the CALMET cell faces.

Block CALMET (read by programs MESOINP, CALMETINP, and BUILDDBS). This block
contains labels that define some variables needed by CALMET.

e MESOSCALE MODEL: Alias of the mesoscale model used. Possibilities are: AMITA, LAMIB,
ARPASIM, NOAA, and ECMWF.

e MESOSCALE_TIME_INCREMENT_(HOURS): Time increment (in h) of the mesoscale data. This
is usually 3 or 6. Normally each time interval corresponds to a GRIB file.

e MESOSCALE_RANGE_OF_LATITUDES: An interval of latitudes that contains the database. This
is just to speed up the algorithm that searches which points of the mesoscale model grid
lay within the domain of the database.

e MESOSCALE_RANGE_OF _LONGITUDES: An interval of longitudes that contains the database.
This is just to speed up the algorithm that searches which points of the mesoscale model
grid lay within the domain of the database.

Block POSTPROCESS_DBS (read by program PosTPDBS). This block contains labels that
define the variables needed by the optional database postprocessor program.

13

e OUTPUT_FILES_IN_GRD_FORMAT: Possibilities are YES or NO. If YES plots maps in GRD file
format.

e OUTPUT _FILES_IN PS_FORMAT: Possibilities are YES or NO. If YES plots maps in PS file for-
mat.

e POSTPROCESS_TIME_INTERVAL_(HOURS): Time interval (in h) of postprocess plots, starting
from the database initial time BEGIN METEO DATA_(HOURS_AFTER_00).

e Z_CUTS_(M): Terrain following heights (in m) at which maps are produced.

TIME_UTC

YEAR = 2007

MONTH = 03

DAY = 01
BEGIN_METEQ_DATA_(HOURS_AFTER_00)
END_METEO_DATA_(HOURS_AFTER_00) =
TIME_STEP METEQ_DATA_(MIN) = 60

=0
3

DATABASE_GRID

UTM_ZONE = 33

UTM_HEMISPHERE = N

X_ORIGIN_(UTM_M) 475000

Y_ORIGIN_(UTM_M) 4100000

CELL_SIZE_(KM) = 1.0

NX = 101

NY = 101

Z_LAYER_(M) = 0 10 40 100 250 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CALMET

MESOSCALE_MODEL = AMITA
MESOSCALE_TIME_INCREMENT_(HOURS) = 3
MESOSCALE_RANGE_OF _LATITUDES = 35.0 40.0
MESOSCALE_RANGE_OF_LONGITUDES = 12.0 15.0

POSTPROCESS_DBS
OUTPUT_FILES_IN_GRD_FORMAT = YES
OUTPUT_FILES_IN_PS_FORMAT = YES
POSTPROCESS_TIME INTERVAL_(HOURS) = 3
Z_CUTS_(M) = 1000. 5000.

Table 1: Example of a meteorological database input file. In this example (see section 8) a
database of 100x100x10 km is created. It contains 101x101x16=163216 points with hourly
meteorological data from 01 MAR 2007 at 0000UTC to 01 MAR at 0300UTC.

14

2.4 The database script files

In order to automate the creation/update of databases the APOLLO procedure contains a series
of script files that control the flow of a database construction. These files are, obviously, oper-
ating system dependent and are located in the folder Scripts/Dbs. The default folder structure
and file names defined in section 7 are assumed.

e Script APOLLO-Build-Dbs-DbsName. Controls the creation of a database named Db-
sName. There must exist a different script file for each database to create/update. This
script updates first the date in the database input file (through a call to a secondary script
named APOLLO-Dbs-touchdate) and then controls the construction of the meteorological
database (this task is done by the script APOLLO-Dbs-engine).

e Script APOLLO-Dbs-touchdate. Changes the date in the date in the database input file.

e Script APOLLO-Dbs-engine. Does the calls to the programs GroINP, MESOINP, CAL-
METINP, CALMET, BUILDDBS, and PosTPDBS. The user can control which programs
have to run.

15

3 Run generation

3.1 Overview

A run is the simulation of a given scenario. APOLLO allows to include several fallout models
within the same run. Since models may run using different number of particle classes (that is,
with a different discretization of granulometry) and/or using different spatial discretizations, it
is necessary to supply different source and granulometry files to each model. A run is defined in
the run input file (see section 3.5) and executed trough a script file (see section 3.6). For each
model present in a run the flow includes:

1. Creation of the granulometry file using the program SETGRANUM. Alternatively the same
file can be supplied by the user without running the SETGRANUM utility.

2. Creation of a source file using the program SETSRC. Alternatively the same file can be
supplied by the user without running the SETSRC utility.

3. Model run.

4. Optionally, model postprocess using the program MODELPOSTP.

3.2 Generation of a granulometry file. The program SETGRANUM

DESCRIPTION: The granulometric distribution for a model is stored in a granulometry file
(see section 6.3 for details). The program SETGRANUM is an utility that reads the GRANULOMETRY
block of a run input file (see section 3.5) and generates a granulometry file assuming that the
mass fraction of particles follows a Gaussian distribution in ® and that the density and the
sphericity of particles vary linearly with ®. Note that, in general, each model present in a run
has to have its own granulometry file because the number of discrete particle classes may vary
from model to model. Note that other distributions different from Gaussian and having arbitrary
density-size and sphericity-size relationships can be also considered. In this case, however, the
granulometry files can not be generated by SETGRANUM but must be supplied directly by the
user.

PROGRAM CALL: (normally included in a script file): Path of the executable + 4 arguments

“SetGranum.exe FileLog FileRunInp FileGrn ModelName”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileRunInp: Path (including name) of the run input file (see Section 3.5) that contains
the GRANULOMETRY block.

e FileGrn: Name (including path) of the granulometry file. This is the output from SET-
GRANUM that is used later by models.

e ModelName: Name of the model (must coincide with the corresponding model block in the
run input file). This is used to read the number of granulometric classes used by each
model.

16

3.3 Generation of a source file. The program SETSRC

DESCRIPTION: The distribution of sources is defined in a source file (see section 6.4 for
details). The program SETSRC is an utility that reads the SOURCE block from the control input
file (see section 3.5) and generates a source file. The source term is constant for a given time
interval but there is no limit on the number and duration of the time intervals. It allows, in
practise, to discretize any kind of time-dependency (time-dependent mass flow rate, column
height, etc.). The program admits three possibilities: point source (mass is released in a single
source point), Suzuki distribution (Suzuki , 1983; Pfeiffer et al., 2005), and buoyant plume model
(Bursik , 2001). The last option is more elaborated and involves the solution of the 1D radial-
averaged plume governing equations that describe the convective region of an eruptive column.
These equations are intimately coupled with the wind field which, for small to medium size
plumes, may induce a substantial plume bent-over and subsequent variations of plume height
and mass release location. For this reason, when this option switched on, the program reads
the values of the wind field from a meteorological file, computes the averaged wind direction
and solves the plume governing equations for each time interval and particle class accounting for
wind. Note that it introduces a time dependence in the source term even when all the eruptive
parameters (mass flow rate, class fraction, etc.) are kept constant in time.

PROGRAM CALL: (normally included in a script file): Path of the executable + 7 arguments

“SetSrc.exe FileLog FileRunInp FileSrc FileGrn FileDbs ModelName UseMesh”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileRunInp: Path (including name) of the run input file (see Section 3.5) that contains
the SOURCE block.

e FileSrc: Name (including path) of the source file. This is the output from SETSRC that
is used later by models.

e FileGrn: Name (including path) of the granulometry file.

e FileDbs: Path (including name) of the Dbs file. It is a binary file created by the BUILDDBS
program. Only used if the SOURCE_TYPE record in the run input file is PLUME.

e ModelName: Name of the model (must coincide with the corresponding model block in the
run input file). This is used to read the number of granulometric classes used by each
model.

e UseMesh: Flag to indicate if the results are projected onto the model mesh. Possibilities
are YES or NO.

3.4 Fallout models
3.4.1 HAzZMAP model

DESCRIPTION: HAZMAP is a FORTRAN9O code for the solution of the equation of diffusion,
transport and sedimentation of small particles, in order to model the dispersion of ash generated
by a convective column. Under the approximations of a constant horizontally uniform wind field,
and negligible vertical advection and diffusion, this equation reduces to:

8Cj 803 803 8(1}5j0j) .

0C5 |, %% _ _K
ot e Ty 0z <

920,
0z2

920
+ Oy;) + S (1)

17

where C is the concentration of the particle-class j having a settling velocity vgj, u = (ug, uy)
is the wind velocity, K is the (constant) horizontal turbulent diffusion coefficient, and S; is
the source term. The generic particle class j is defined by triplet of values characterizing each
particle (dp, pp, Fp), that are, respectively, diameter, density, and a shape factor. For d, we
use the equivalent diameter d, which is the diameter of a sphere of equivalent volume. For
the shape factor F}, we choose the sphericity ¢, which is the ratio of the surface area of a
sphere with diameter d to the surface area of the particle. In our approximation, each triplet
(d, pp,) is sufficient to define the settling velocity value vy;. Since eq.(1) is linear in mass,
an instantaneous release of the total mass from the eruption column can be assumed if wind
and diffusion parameters do not change significantly with time and only the final deposit is
needed. This quasi-steady approach is assumed to hold during each simulation time interval.
Considering these approximations, the above equation has a semi-analytical solution as described
in (Macedonio et al., 2005). The computational domain is split into thin horizontal layers that
fall to the ground together with the particles originally contained in a given initial vertical
interval [z;,z;+1] at time ¢ = 0. An analytical solution is then found for each layer. Since the
whole treatment is done separately for each class of particles and no vertical diffusion and wind
advection takes place, all particles falling from the same initial height remain at all times at
the same altitude. While the centre of each cloud is translated by wind, the cloud spreads
horizontally due to diffusion and settles by gravity until it reaches the ground where it forms
the deposit. The model outputs therefore accumulations on the ground for each granulometric
class. For further details see (Macedonio et al., 2005) and (Pfeiffer et al., 2005).

There are several semi-empirical parameterizations for the particle settling velocity v if one
assumes that particles settle down at their terminal velocity:

49 (Pp — pa) d
S NE O TR 2
3Cdpa ()

Vg =

where p, and p, denote air and particle density, respectively, d is the particle equivalent diameter,
and Cy is the drag coefficient. Cy depends on the Reynolds number, Re = dvs/v, (Vo = ta/pa
is the kinematic viscosity of air, pu, the dynamic viscosity). In HAZMAP several options are
possible for estimating settling velocity, such as:

1. ARASTOOPOUR model (Arastoopour et al., 1982):

24
Cym R—(l + 15Re%%87) Re < 107 3)
— e
0.44 Re > 103

valid for spherical particles only.

2. GANSER model (Ganser , 1993):

o 24 0.6567 04305K2
Ci= o {1+o.1118[Re (K1K>)] }JFW (4)
R6K1K2

where K = 3/(1+2705), Ky = 101-84148(-L0gv)**™ o6 w6 shape factors, and v is the
particle sphericity () = 1 for spheres).

3. WILSON model (Wilson and Wang , 1979) using the interpolation suggested by Pfeiffer et al.

(2005):
24
Ego_o'wg +2/1.07 — ¢ Re < 10?
= 1- _
Ca=9q 1- M(mf’ — Re) 10? < Re <103 (5)

900
Re > 10°

18

where ¢ = (b+¢)/2a is the particle aspect ratio (a > b > ¢ denote the particle semi-axes).

4. DELLINO model (Dellino et al., 2005):

Vg = 1.2605%‘1 (Ar 51'6)0'5206

(6)

where Ar = d3(p, — pa)pa/p2 is the Archimedes number, and ¢ is a particle shape factor
(sphericity to circularity ratio).

PROGRAM CALL (normally included in a script file): Path of the executable + 7 arguments

“Hazmap.exe FileLog FileRunInp FileSrc FileGrn FileDbs FileLst FileRes”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileRunInp: Path (including name) of the run input file (see Section 3.5) that contains
the HAZMAP block.

e FileSrc: Name (including path) of the source file.
e FileGrn: Name (including path) of the granulometry file.

e FileDbs: Path (including name) of the Dbs file. It is a binary file created by the BUILDDBS
program.

e FileLst: Path (including name) of the Lst file. It is an output ASCII file with information
about the HAZMAP run.

e FileRes: Path (including name) of the Res file. This is binary output file with the results
of HazMmAP. For file format see section 6.5.

3.4.2 FALL3D model

DESCRIPTION: FALL3D is a 3D time-dependent Eulerian model which circumvents most of
the simplifications behind the simpler fallout models. The model solves the advection-diffusion-
sedimentation equation using a finite differences explicit scheme using a regular mesh (Costa
et al., 2005). It uses the gradient transport theory to evaluate the atmospheric turbulent diffusion
within and above the ABL and experimental fits for the particle settling velocities, in addition
to the values of the dataset (full 3D prognostic wind field, source term and topography). The
model can be therefore used to forecast either ash concentration in the atmosphere or ash loading
on the ground. APOLLO contains both serial and parallel versions of FALL3D. The structure
of the code combined with the fact that the interaction among particles is a second order effect
facilitates the parallelization enormously. Two kinds of parallelization are considered, one for
particle classes and one for space (vertical layers). Firstly, the processors available are distributed
among groups or teams. Each team works only on a certain particle class or on a set of particle
classes (the number of processors must be, in consequence, a multiple or a divisor of the number
of classes). If each particle class has more than one processor assigned (i.e. if the number of
processors is a multiple of the number of classes) a second parallelization on the domain is
possible. In this case, the tasks within a team are subdivided in vertical layers. Note that
it implies a data exchange among processors of the same team but the teams remain isolated
among them.

19

The non-conservative form of continuity equation written in a generalised coordinate system
(X,Y,Z) is:
oC oC oC oC OV

o T Uax T Vay + W —Valgy = 07

0 0C/ px 0 0C/ px 0 0C / ps
ﬁQ“XM>+WG“YW oz \Pla—g) 5

(7)

where C'is the scaled average concentration, (U, V, W) are the scaled wind speeds, Kx, Ky and
Kz are the diagonal scaled diffusion coefficients, p. the scaled atmospheric density and S, is
the source term in the generalized coordinate system. Considering as a frame of reference a
simple terrain-following coordinate system where the horizontal coordinates remain unchanged
with respect to the Cartesian (z = X, y =Y, z — Z), the scaling factors are those reported in
Table 2. Equation (7) is solved for each particle class independently, i.e. assuming no interac-
tion between particles belonging to different classes during the transport process. The generic
particle class j is defined by triplet of values characterizing each particle (dy, pp, Fp), that are,
respectively, diameter, density, and a shape factor. For d, we use the equivalent diameter d,
which is the diameter of a sphere of equivalent volume. For the shape factor F,, we choose the
sphericity 1, which is the ratio of the surface area of a sphere with diameter d to the surface area
of the particle. In our approximation, each triplet (d, pp,) is sufficient to define the settling
velocity value Vy;. Settling velocity models available in FALL3D are ARASTOOPOUR (see eq. 3),
GANSER (see eq. 4), WILSON (see eq. 5), and DELLINO (see eq. 6). For a detailed description on
the numeric algorithm see Costa et al. (2005).

In order to solve equation (7) it is necessary to evaluate the vertical and horizontal diffusion co-
efficients. Inside the atmospheric surface layer, the Monin-Obukhov similarity theory estimates
the vertical turbulent diffusivity K, in terms of the friction velocity u,, and the Monin-Obukhov
length L: .

%

K. =— (8)
where k is the von Karman constant (k = 0.4), z is the distance from the ground, and ¢y, is the
atmospheric stability function (e.g. Jacobson, 1999). Above the surface layer, the original form
of the Monin-Obukhov similarity theory is no longer valid. In order to extend this theory to
the entire boundary layer (z/h < 1) an evaluation of the Atmospheric Boundary Layer (ABL)
height h is required. For this purpose, FALL3D uses a simple parameterisation valid on the entire
ABL (Ulke, 2000):

h 71
KUy 2 (1) < +9. 2—i> h/L >0 stable
Lh
Kz h 2 1/2 (9)
_132Z2 <
KUy 2 (1) <1 13L h> h/L <0 unstable

Note that in the neutral case (L — o) both expressions coincide. Finally, in the free atmosphere
above the ABL (z/h > 1), K, is considered a function of the local vertical wind gradient, a
characteristic length scale [., and a stability function F, depending on the Richardson number
Ri:

ov
0z

For [, and F, the model adopts the relationship used by the CAM3 model (Collins et al., 2004)
of the National Center for Atmospheric Research (NCAR):

1 1\!
lo=(—+— 11
c QW+A) (11)

K, =1 F.(Ri) (10)

20

1
table (Ri >0
Fu(Ri)={ T+10m(18R Sable (Bi>0)
V1 —18Ri unstable (Ri < 0)
where A. is the so-called asymptotic length scale (A, ~ 30m) while the Richardson number is
g 00,/0z

0,10V /02|
On the other hand, for the horizontal eddy diffusivity Ky = K, = K, FALL3D assumes a
large eddy parameterisation as that used by RAMS model (for Az/A < 1 Pielke et al., 1992):

(%—x) i (aa_y” (13)

where A = /A, Ay, Csp is a dimensionless constant ranging from 0.135 to 0.32, K4 is a user
defined parameter close to one, and R ~ 3.

(12)

calculated as Ri = (with 0 being virtual potential temperature).

2
Ky = Rmax | Kn; (CsgA)? %—i-% +2
oy oz

Ko = 0.075K 4 AY/3

PROGRAM CALL (serial version): Path of the executable + 7 arguments
“Fall3d_ser.exe FileLog FileRunInp FileSrc FileGrn FileDbs FileLst FileRes”
PROGRAM CALL (parallel version): Path of the executable + 8 arguments

“Fall3d par.exe FileLog FileRunInp FileSrc FileGrn FileDbs FileLst FileRes
Ncpu”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileRunInp: Path (including name) of the run input file (see Section 3.5) that contains
the FALL3D block.

e FileSrc: Name (including path) of the source file.
e FileGrn: Name (including path) of the granulometry file.

e FileDbs: Path (including name) of the Dbs file. It is a binary file created by the BUILDDBS
program.

e FileLst: Path (including name) of the Lst file. It is an output ASCII file with information
about the FALL3D run.

e FileRes: Path (including name) of the Res file. This is binary output file with the results
of FALL3D. For file format see section 6.5.

e Ncpu: Number of CPU groups.

3.4.3 TEPHRA model

DESCRIPTION: TEPHRA (Connor et al., 2001) is an Eulerian model based on an analytical
solution of eq. (1). The particle fall time depends on particle properties (density, diameter) and

21

Parameter Scaling

Coordinates X=2 Y=y Z=z-h(x,y)

Velocities U=u, V=u W= uyJ 1 Vsj = vst_l
Diffusion Coefficients | Kx = K, Ky =K, Kz= K,J?2
Concentration C=cJ

Density px = pJ

Source Term S, =SJ

Table 2: Summary of the scaling factors for the terrain-following domain coordinate system
(=X, y=Y, z— Z). J indicates the Jacobian of the coordinate system transformation.

atmospheric density. Settling velocity is determined assuming spherical particles and considering
different regimes depending on the Reynolds number and atmospheric density as:

2
p‘llg;l Re <6 (laminar)
4 2 1/3
V, = (2595:5a> 6 < Re <500 (intermediate) (14)
3.1gd
% Re > 500 (turbulent)
a

where p, and p, stand, respectivelly, for the air and particle densities, d is the particle diameter,
W is air viscosity, and Re is the Reynolds number. Note that, in the turbulent regime, this
coincides with equation (3) (spherical particles). On the other hand, diffusion of particles in the
atmosphere is estimated using a bivariate Gaussian probability density function to approximate
turbulence with the variance o given by:

4Kt 4 0.01282> t >t, (coarse particles)

= 5/2
7 gc (t + (0.222)2/5) t <t, (fine particles)

(15)

where t is the total particle fall time, ¢, is a threshold time, z is the particle release height, and
c is a constant.

PROGRAM CALL (normally included in a script file): Path of the executable + 7 arguments
“Tephra.exe FileLog FileRunInp FileSrc FileGrn FileDbs FileLst FileRes”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileRunInp: Path (including name) of the run input file (see Section 3.5) that contains
the TEPHRADlock.

e FileSrc: Name (including path) of the source file.
e FileGrn: Name (including path) of the granulometry file.

e FileDbs: Path (including name) of the Dbs file. It is a binary file created by the BUILDDBS
program.

e FileLst: Path (including name) of the Lst file. It is an output ASCII file with information
about the TEPHRA run.

e FileRes: Path (including name) of the Res file. This is binary output file with the results
of TEPHRA. For file format see section 6.5.

22

3.5 The run input file

A run input file (see Table 3) is an ASCII file composed by a series of blocks and labels. Labels
are case sensitive and can be placed in any order within a block. Comments and extra lines
can be inserted anywhere. This file controls the input parameters needed by the programs SET-
GRANUM, SETSRC, MODELPOSTP as well as by the different models (HAzmAP, FALL3D and
TEPHRA). Each model has its own block (labelled like the model) where the model inputs are
specified. A new block named MODELNAME should be added to this file whenever a new model is
added to the APOLLO runs. There must exist an input file for each run.

Block TIME_UTC (read by SETSRC and the models). This block contains labels that define
the time range of a run (in UTC time). The run time interval must lay within the time interval
bounds of the meteorological database to which a run is linked.

e YEAR: Simulation year.

e MONTH: Simulation month (1-12).

e DAY: Simulation day (1-31).

e RUN_START_(HOURS_AFTER_00): Run start hour (after 0000UTC of current day).

e ERUPTION_END_(HOURS_AFTER_00) : Eruption end hour (after 0000UTC of current day). If
the SETSRC program is used to generate the source term, this is the time instant at which
source is switched off.

e RUN_END_(HOURS_AFTER_00): Run end hour (after 0000UTC). Note that, in general, a run
can continue even when the source term is switched off (i.e. when the eruption has ceased)
in order to give time for the remaining airborne particles to fall. This can be important
in time-dependent models such as FALL3D. In contrast, for steady or quasi-steady models
(HAzMAP or TEPHRA) this is unrelevant and RUN_END_(HOURS_AFTER_00) can coincide with
ERUPTION_END_(HOURS_AFTER_00).

Block SOURCE (read by SETSRC). This block contains labels that define the source charac-
teristics.

e X_VENT_(UTM_M): z-coordinate of the vent (UTM coordinates in m).
e Y_VENT_(UTM_M): y-coordinate of the vent (UTM coordinates in m).

e MASS_FLOW_RATE_(KGS): Values of the mass flow rate (in kg/s). One value for each time in-

terval. The duration of each time interval is constant and given by RUN_START_(HOURS_AFTER_00)

minus ERUPTION_END_(HOURS_AFTER_00) divided by the number of time intervals (automat-
ically computed by the program from the number of values).

e SOURCE_TYPE: Type of source distribution. Possibilities are POINT, SUZUKI or PLUME.

e HEIGHT_ABOVE_VENT_(M): Heights of the plume (in m above the vent). One value for each
time interval.

e A: Parameter A in the Suzuki distribution. One value for each time interval. Used only if
SOURCE_TYPE SUZUKI.

e L: Parameter L in the Suzuki distribution. One value for each time interval. Used only if
SOURCE_TYPE SUZUKI.

23

EXIT_VELOCIY_(MS): Magma exit velocity (in m/s) at the vent. One value for each time
interval. Used only if SOURCE_TYPE = PLUME.

EXIT_TEMPERATURE_(K): Magma exit temperature (in °K’) at the vent. One value for each
time interval. Used only if SOURCE_TYPE = PLUME.

EXIT_VOLATILE FRACTION_(IN%): Magma volatile mass fraction at the vent. One value
for each time interval. Used only if SOURCE_TYPE = PLUME.

Block GRANULOMETRY (read by SETGRANUM). This block contains labels that define
the granulometric characteristics.

NUMBER_OF_CLASSES: Number of particle classes.

FI_MEAN: Mean value of ® (Gaussian distribution).

FI_DISP: Value of ¢ in the Gaussian distribution.

FI_RANGE: Minimum and maximum values of ® (®,,;, and ®,,,, respectively).

DENSITY_RANGE: Values of density (in kg/m?) associated to ®,,;, and ®,,, particles.
Linear interpolation is assumed.

SPHERICITY_RANGE: Values of sphericity associated to ®,,;, and ®,,., particles. Linear
interpolation is assumed.

Block FALL3D (read by the FALL3D model). This block contains labels that define the
FALL3Dinput data.

ZLAYER_(M): Heights (in m) of the z-layers in terrain following coordinates, i.e. above the
vent. It is not necessary to specify the number of vertical layers since it is automatically
calculated by the program. Alternatively, for regular z-layering, the user can also specify
the initial value (2,), the final value (2), and the increment (Az) using the format:
ZLAYER_(M) FROM z, TO zf INCREMENT Az

NUMBER_OF_CLASSES: Numbner of particle classes.

TERMINAL VELOCITY MODEL: Type of terminal settling velocity model. Possibilities are
ARASTOOPOUR (Arastoopour et al., 1982), GANSER (Ganser , 1993), WILSON (Wilson and
Wang , 1979) and DELLINO (Dellino et al., 2005).

VERTICAL_TURBULENCE _MODEL: Type of model for vertical diffusion. Possibilities are CONSTANT
or SIMILARITY. See section 3.4.2 and Costa et al. (2005) for details.

VERTICAL DIFFUSION COEFFICIENT (M2/S): Value of the diffusion coefficient (in m?/s).
Only used if VERTICAL _TURBULENCE MODEL = CONSTANT

HORIZONTAL_TURBULENCE MODEL: Type of model for horizontal diffusion. Possibilities are
CONSTANT or RAMS. See section 3.4.2 and Costa et al. (2005) for details.

HORIZONTAL DIFFUSION_COEFFICIENT_(M2/S): Value of the diffusion coefficient (in m?/s).
Only used if HORIZONTAL_TURBULENCE MODEL = CONSTANT.

POSTPROCESS_TIME_INTERVAL_(HOURS): Time interval to output results (in k). Results are
also output at the end of the run.

24

Block HAZMAP (read by the HAZMAP model). This block contains labels that define the
HAzMAP input data.

e ZLAYER_(M): Heights (in m) of the z-layers in terrain following coordinates, i.e. above the
vent. It is not necessary to specify the number of vertical layers since it is automatically
calculated by the program. Alternatively, for regular z-layering, the user can also specify
the initial value (2,), the final value (2), and the increment (Az) using the format:
ZLAYER_(M) FROM z, TO zf INCREMENT Az

e NUMBER_OF_CLASSES: Numbner of particle classes.

e TERMINAL VELOCITY MODEL: Type of terminal settling velocity model. Possibilities are
ARASTOOPOUR (Arastoopour et al., 1982), GANSER (Ganser , 1993), WILSON (Wilson and
Wang , 1979) and DELLINO (Dellino et al., 2005).

e HORIZONTAL DIFFUSION COEFFICIENT (M2/S): Value of the diffusion coefficient K (in m?/s).
e POSTPROCESS_TIME_INTERVAL_(HOURS): Time interval to output results (in h).

Block TEPHRA (read by the TEPHRA model). This block contains labels that define the
TEPHRA input data.

e ZLAYER_(M): Heights (in m) of the z-layers in terrain following coordinates, i.e. above the
vent. It is not necessary to specify the number of vertical layers since it is automatically
calculated by the program. Alternatively, for regular z-layering, the user can also specify
the initial value (2,), the final value (2), and the increment (Az) using the format:
ZLAYER_(M) FROM z, TO zf INCREMENT Az

NUMBER_OF_CLASSES: Numbner of particle classes.

e DIFFUSION COEFFICIENT_(M2/S): Value of the diffusion coefficient K (in m?/s).

FALL_TIME_THRESHOLD: Value of fall time threshold ¢, (see eq. (15)).

EDDY_CONSTANT: Value of constant ¢ (see eq. (15)).

Block POSTPROCESS_MODELS (read by MopELPoOsTP). This block contains labels
used to define the postprocess of models and production of maps. It is only read if the optional
program MODELPOSTP runs.

e OUTPUT _FILES_IN_GRD _FORMAT: Possibilities are YES or NO. If YES, MODELPOSTP plots
files in GRD format. Files in GRD format (see section 6.6 for details) can be readed directly
by several plotting programs like the commercial software GRAPHER. Alternativelly, the
user may also generate its own plots using functons from several free packages (e.g. gnuplot

in FORTRAN).

e QUTPUT FILES_IN PS_FORMAT: Possibilities are YES or NO. If YES, MODELPOSTP plots
files in PS format.

e MAP _TOTAL _LOAD: Possibilities are YES or NO. If YES MODELPOSTP plots the total ground
load.

e UNITS: Units of MAP_TOTAL_LOAD. It must be KG/M2.

e CONTOUR_LEVELS: Values of the contour levels for MAP_TOTAL_LOAD. Only used when
OUTPUT_FILES_IN_PS_FORMAT is YES.

25

MAP_CLASS_LOAD: Possibilities are YES or NO. If YES MoODELPOSTP plots the class ground
load.

UNITS: Units of MAP_CLASS_LOAD. It must be KG/M2.

CONTOUR_LEVELS: Values of the contour levels for MAP_CLASS _LOAD. Only used when
OUTPUT_FILES_IN_PS_FORMAT is YES.

MAP_DEPOSIT_THICKNESS: Possibilities are YES or NO. If YES MoODELPOSTP plots total
deposit thickness.

UNITS: Units of MAP_DEPOSIT_THICKNESS. Possibilities are MM (for mm), CM (for cm),
and M (for m).

COMPACTATION_FACTOR: Deposit compactation factor.

CONTQUR_LEVELS: Values of the contour levels for MAP_DEPOSIT_THICKNESS. Only used when
OUTPUT_FILES_IN_PS_FORMAT is YES.

MAP_TOTAL_CONCENTRATION: Possibilities are YES or NO. If YES MoODELPOSTP plots the
total concentration at certain z-levels. Only for 3D models (FALL3D).

UNITS: Units of MAP_TOTAL_CONCENTRATION. It must be KG/MB.
Z_CUTS_(M): z-coordinates of the layers at which concentration is output.

CONTQOUR_LEVELS: Values of the contour levels for MAP_TOTAL_CONCENTRATION. Only used
when OUTPUT _FILES_IN_PS_FORMAT is YES.

MAP_Z_CUMMULATIVE CONCENTRATION: Possibilities are YES or NO. If YES MoDELPoSTP
plots the z cummulative concentration (vertical integration). Only for 3D models (FALL3D).

UNITS: Units of MAP_Z_CUMMULATIVE_CONCENTRATION. It must be KG/M2.

CONTOUR_LEVELS: Values of the contour levels for MAP_Z CUMMULATIVE CONCENTRATION.
Only used when OUTPUT_FILES_IN_PS_FORMAT is YES.

MAP_Z MAXIMUM_CONCENTRATION: Possibilities are YES or NO. If YES MODELPOSTP plots
the maximum value of concentration along the vertical for each point. This variable can
be useful for flight safety concentration tresholds. Only for 3D models (FALL3D).

UNITS: Units of MAP_Z_MAXIMUM_CONCENTRATION. It must be KG/M3.

CONTOUR_LEVELS: Values of the contour levels for MAP_Z MAXIMUM CONCENTRATION. Only
used when OUTPUT_FILES_IN_PS_FORMAT is YES.

26

Table 3: Example run input file (see section 8).

TIME_UTC

YEAR = 2007

MONTH = 03

DAY = 01
ERUPTION_START_(HOURS_AFTER_00) = 0O
ERUPTION_END_(HOURS_AFTER 00) = 0.1
RUN_END_(HOURS_AFTER_00) = 2.

SOURCE
X_VENT_(UTMM) = 500080.
Y_VENT_(UTMM) = 4177690.

MASS_FLOW_RATE_(KGS) = 3d6
SOURCE_TYPE = PLUME
POINT_SOURCE

HEIGHT_ABOVE_VENT_(M) = 8000.
SUZUKI_SOURCE
HEIGHT_ABOVE_VENT_(M) = 8000.
A=4.

L =5.

PLUME_SQOURCE

EXIT_VELOCIY_(MS) = 100.
EXIT_TEMPERATURE_(K) = 1073.
EXIT_VOLATILE FRACTION_(IN%) = O.

GRANULOMETRY
FI_MEAN = 2.5
FIDISP = 1.5

FI_RANGE = 0. 5.
DENSITY RANGE = 1200 2300
SPHERICITY RANGE = 0.9 0.9

FALL3D

ZLAYER_(M) FROM 0. TO 10000. INCREMENT 500.
NUMBER_OF_CLASSES = 6

TERMINAL_VELOCITY_MODEL = GANSER
VERTICAL_TURBULENCE_MODEL = SIMILARITY
VERTICAL DIFFUSION_COEFFICIENT_(M2/S) = 100.
HORIZONTAL_TURBULENCE_MODEL = RAMS

HORIZONTAL DIFFUSION COEFFICIENT (M2/S) = 2500.

POSTPROCESS_TIME_INTERVAL_(HOURS) = 1.

(One value for each source time interval)

(Variables below used if SOURCE_TYPE = POINT)

Variables below used if SOURCE_TYPE
One value for each source time interval)

(SUZUKI)
(
(One value for each source time interval)
(
(

One value for each source time interval)
Variables below used if SOURCE_TYPE = PLUME)

(if VERTICAL _TURBULENCE MODEL = CONSTANT)

(if HORIZONTAL _TURBULENCE MODEL = CONSTANT)

27

HAZMAP

Z_LAYER (M) FROM 0. TO 10000.
NUMBER_OF_CLASSES = 12

TERMINAL VELOCITY MODEL = Ganser
HORIZONTAL DIFFUSION_COEFFICIENT_(M2/S) = 2500.
POSTPROCESS_TIME INTERVAL_(HOURS) = 1.

INCREMENT 250.

TEPHRA

ZLAYER_(M) FROM 0. TO 10000.
NUMBER_OF_CLASSES = 12
DIFFUSION_COEFFICIENT_(M2/S) = 2500.
FALL_TIME_THRESHOLD = 2500.0
EDDY_CONSTANT = 0.03

INCREMENT 250.

POSTPROCESS_MODELS
OUTPUT_FILES_IN_GRD_FORMAT = YES
OUTPUT_FILES_IN_PS_FORMAT = YES
MAP_TOTAL_LOAD = YES

UNITS = KG/M2
CONTOUR_LEVELS
MAP_CLASS_LOAD
UNITS = KG/M2

0.1 0.256 0.5 1. 5. 10. 50.
NO

CONTOUR_LEVELS = 0.1 0.25 0.5 1. 5. 10. 50.
MAP_DEPOSIT_THICKNESS = YES
UNITS = MM

COMPACTATION_FACTOR = 0.7

CONTOUR_LEVELS = 0.1 1. 5. 10. 50. 100. 500.

MAP_TOTAL_CONCENTRATION = YES

UNITS = KG/M3

Z_CUTS_(M) = 1000. 2000.
CONTOUR_LEVELS = 1d-5 1d-4
MAP_Z_CUMMULATIVE CONCENTRATION = YES
UNITS = KG/M2

CONTOUR_LEVELS = 0.01 0.1 1. 10.
MAP_Z_MAXIMUM_CONCENTRATION = YES
UNITS = KG/M3

CONTOUR_LEVELS = 1d-4 1d-3

(Only used if QUTPUT_FILES_IN_PS_FORMAT=YES)

(Only used if OUTPUT_FILES_IN_PS_FORMAT=YES)

(Only used if QUTPUT_FILES_IN_PS_FORMAT=YES)

(Only used if OUTPUT_FILES_IN_PS_FORMAT=YES)

(Only used if OUTPUT_FILES_IN_PS_FORMAT=YES)

(Only used if OUTPUT_FILES_IN_PS_FORMAT=YES)

28

3.6 The run script files

In order to automate the execution of models the APOLLO procedure contains a series of
script files that control the run flow. These files are, obviously, operating system dependent.
The default folder structure and file names defined in section 7 are assumed.

e Scripts APOLLO-Run-ProblemName. These scripts (located in the folder Seripts/Runs)
control the run of a problem named ProblemName. There must exist a different script for
each problem. The scripts update first the date in the run input file (through a call to a
secondary script named APOLLO-Run-touchdate) and then control the run of each model
(this task is done by other scripts, one for model, named APOLLO-ModelName-engine).
The user can control which models have to run.

e Script APOLLO-Run-touchdate. This script (located in the folder Scripts/Runs) changes
the date in the run input file.

e Scripts APOLLO-ModelName-engine. These scripts (located in the folder Secripts/Models)
run a certain model (e.g. APOLLO-Hazmap-engine runs HAZMAP) calling first the program
SETGRANUM to generate the model granulometry, then the program SETSRC to generate
the source term, then the model and, finally, the program MODELPOSTP to postprocess
results.

29

4 Postprocess of models

4.1 Overview

Fallout models output either 2D results at ground surface (normally deposit load and/or deposit
thickness) or 3D results (concentration on air). In many cases it is interesting to evaluate also
other derived variables that may have interest from the point of view of hazard assessment or
crisis management. For example, the air-borne ash burden serves to compare simulations with
satellital images, or the maximum value of concentration along the vertical can give insights on
flight safety if the volcanic cloud moves towards the vicinity of an airport or intersects an aerial
corridor. From a practical point of view it is better to split the postprocess computations from
the model run (that is, to calculate these quantities after the model run).

4.2 The program MODELPOSTP

DESCRIPTION: The program MODELPOSTP (alias for Model Postprocess) is an optional
utility that reads a model output binary file (see section 6.5), calculates some relevant quan-
tities at selected z-planes and time instants and produces elementary maps in GRD (see sec-
tion 6.6) and PS formats. The parameters needed by MODELPOSTP are defined in the block
POSTPROCESS_MODELS, located at the end of the run input file.

PROGRAM CALL (normally included in a script file): Path of the executable + 4(5) argu-

ments

“ModelPostp.exe FileLog FileRunInp FileRes BASERES (FileSym)”

e FileLog: Path (including name) of the log file. It is an ASCII file that contains information
about the program execution.

e FileRunInp: Path (including name) of the run input file (see Section 3.5) that contains
the POSTPROCESS_MODELS block.

e FileRes: Path (including name) of the Res file. This is binary output file with the results
of models. For file format see section 6.5.

e BASERES: Path where the MODELPOSTP output files are dump.

e FileSym: Path (including name) of the symbols file. This file is optional (MODELPOSTP
can be called using either 4 or 5 arguments) and is used to add symbols and legends to
the PS files. For file format see section 6.7.

30

5 The library LIBAPOLLO

LIBAPOLLO is a library written in FORTRAN 77. It contains a set of user-callable routines that
act as an interface between programs and files used by the APOLLO procedure. When invoked
within a program, these routines allow to read and extract information from different files. The
programs included in the APOLLO procedure make use of LIBAPOLLO routines for file read
operations. The use of this library is strongly recommended (although not mandatory) if the
user wishes to add a new model to the procedure. The reason is twofold. First because it
simplifies enormously the codes. Second, and more important, because any future change in the
format of a file will imply modifications only in the library, but not in the programs/models,
which will remain unchanged. The LIBAPOLLO contains several families of routines devoted to
different purposes.

NOTE: The routines of the library can be called either form FORTRAN or C using the same
sintaxis. To call routines from C simply include the header CtoF.h (#include ” CtoF.h”) located
in the folder /Programs/LibApollo/CtoF .

5.1 Routines to read an input control file

An input control file (either for a meteorological database or for a specific run) is an ASCII
file composed by blocks of lines (labels). Each block starts with a header that informs about
the general contents of the lines below. In turn, each line of a block starts with a header word
that can be followed by a number of words and/or parameters (a parameter is a number, either
integer or real). Line headers within a block can not be repeated, but two lines can be identical
if they belong to different blocks. Comments can be placed anywhere. The routines that read
an input file search first for a specific block header and then for a specific line header within the
block. The rest of the file contents is simply ignored.

e subroutine APOLLO _get_input_npar
PURPOSE: Gets the number of parameters (numbers) included in a line.
SINTAX: call APOLLO_get_input_npar (fname, block, line, npar, istat, message)
Variable kind length Description
fname INPUT char any Path (including name) of the file
block INPUT char any Block header

line INPUT char any Line header
npar OUTPUT int 4 Number of parameters found in the line
istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_get_input_nword

PURPOSE: Gets the number of words included in a line.

SINTAX: call APOLLO_get_input_nword (fname, block, line, nword, istat, message)
Variable kind length Description
fname INPUT char any Path (including name) of the file
block INPUT char any Block header

line INPUT char any Line header

nword OUTPUT int 4 Number of words found in the line (header not
included)

istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

31

e subroutine APOLLO _get_input_int4
PURPOSE: Reads nval integers of length 4 from a line.
SINTAX: call APOLLO_get_input_int4 (fname, block, line, value, nval, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file
block INPUT char any Block header

line INPUT char any Line header

nval INPUT int 4 Number of values to read

value OUTPUT int(nval) 4 Values of the nval integers to read
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_get_input_rea4
PURPOSE: Gets nval reals of length 4 from a line.
SINTAX: call APOLLO_get_input_rea4 (fname, block, line, value, nval, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file
block INPUT char any Block header

line INPUT char any Line header

nval INPUT int 4 Number of values to read

value OUTPUT rea(nval) 4 Values of the nval reals to read
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_get_input_rea8
PURPOSE: Gets nval reals of length 8 from a line.
SINTAX: call APOLLO_get_input_rea8 (fname, block, line, value, nval, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file
block INPUT char any Block header

line INPUT char any Line header

nval INPUT int 4 Number of values to read

value OUTPUT rea(nval) 8 Values of the nval reals to read
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO _get_input_cha
PURPOSE: Gets nval characters from a line.
SINTAX: call APOLLO_get_input_cha (fname, block, line, value, nval, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file
block INPUT char any Block header

line INPUT char any Line header

nval INPUT int 4 Number of values to read

value OUTPUT char(nval) any Values of the nval strings to read
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

5.2 Routines to read a database

A database is composed by properties and meteorological variables. Properties, which can be
integer or real numbers, define characteristics of the database like date, location, number of

32

points, etc. Meteorological variables are the contents of the database and are stored in a direct
access file. There exists a file record for each variable at a particular time instant and for each
vertical layer. The length of a record is therefore nx x ny (8 bytes).

e subroutine APOLLO _get_dbs_property_int4
PURPOSE: Gets the value of an integer type property from a database.
SINTAX: call APOLLO_get_dbs_property-int4 (fname,word,value,istat,message)

Variable kind length

Description

fname INPUT char any
word INPUT char any

value OUTPUT int 4
istat OUTPUT int 4
message OUTPUT char 100

Path (including name) of the file

Code of the property to read. Possibilities are
“DATE”: Date of the database (YYYYMMDD)
“BEGIN”: Initial time of data (h after 00UTC)
“END”: Final time of data (h after 00UTC)
“NX”: Number of points in the x-direction
“NY”: Number of points in the y-direction
“NZ”: Number of vertical layers

Value of the property defined in word
Execution status. 0 means no error

Output message (only if istat # 0)

e subroutine APOLLO _get_dbs_property_rea8
PURPOSE: Gets the value of an real type property from a database.
SINTAX: call APOLLO_get_dbs_property_rea8 (fname,word,value,istat,message)

Variable kind length

Description

fname INPUT char any
word INPUT char any

value OUTPUT real 8

istat OUTPUT int 4
message OUTPUT char 100

Path (including name) of the file

Code of the property to read. Possibilities are
“X-ORIGIN”: z-origin coordinate (UTM in m)
“Y-ORIGIN”: y-origin coordinate (UTM in m)
“X-SPACE”: z-grid spacing (in km)
“Y-SPACE”: y-grid spacing (in km)
“Z-LAYERS”: z-layers coordinates (in m)
Value of the property defined in word. Returns
an scalar except if word="Z-LAYERS”. In this
case returns nz values

Execution status. 0 means no error

Output message (only if istat # 0)

e subroutine APOLLO_get_dbs_value_point
PURPOSE: Gets the value of a variable on a point and at a given time instant. The point
coordinates must lay within the bounds of the database. If the point does not coincide
with a node of the database grid, results are interpolated bilinearly. A terrain following

coordinate system is assumed.

SINTAX: call APOLLO_get_dbs_value_point (fname, timesec, word, x, y, z, value, endsec,

istat, message)

33

Variable

kind

length

Description

fname
timesec

word

N,_<><

value
endsec

istat
message

INPUT
INPUT

INPUT

INPUT
INPUT
INPUT

ouTPUT
ouTpPUT

OouUTPUT
ouTpPUT

char
int

char

real
real
real

real
int
int
char

any
4

any

0¢)

4
100

Path (including name) of the file

Time (in s after 00UTC) at which data is ex-
tracted

Code of the property to read. Possibilities are
TOPOGRAPHY

VELOCITY-X

VELOCITY-Y

VELOCITY-Z

TEMPERATURE
CONVECTIVE-VELOCITY-SCALE
MIXING-HEIGHT
MONIN-OBUKHOV-LENGTH

Point z-coordinate (UTM in m)

Point y-coordinate (UTM in m)

Point z-coordinate (in m, terrain following)
NOTE: z=0 for TOPOGRAPHY,
CONVECTIVE-VELOCITY-SCALE,
MIXING-HEIGHT and MONIN-OBUKHOV-
LENGTH

Value of the property defined in word

Time (in s after 00UTC) until which the value
of the variable remains unchanged

Execution status. 0 means no error

Output message (only if istat # 0)

e subroutine APOLLO_get_dbs_value_plane
PURPOSE: Gets the values of a variable on a plane (vertical layer) at a given time instant.
The plane is assumed to have nx X ny points, at the same horizontal location that those
of the database. If the plane z-coordinate does not coincide with a layer of the database,
results are interpolated linearly. The plane can be above the upper limit of the database.
A terrain following coordinate system is assumed.
SINTAX: call APOLLO_get_dbs_value_plane (fname, timesec, word, z, value, endsec, istat,

message)

34

Variable kind length Description

fname INPUT char any Path (including name) of the file

timesec INPUT int 4 Time (in s after 00OUTC) at which data is ex-
tracted

word INPUT char any Code of the property to read. Possibilities are
TOPOGRAPHY
VELOCITY-X
VELOCITY-Y
VELOCITY-Z
TEMPERATURE
CONVECTIVE-VELOCITY-SCALE
MIXING-HEIGHT
MONIN-OBUKHOV-LENGTH

z INPUT real 8 Plane z-coordinate (in m, terrain following)
NOTE: z=0 for TOPOGRAPHY,
CONVECTIVE-VELOCITY-SCALE,
MIXING-HEIGHT and MONIN-OBUKHOV-

LENGTH
value OUTPUT real(nx*ny) 8 Values at the nz x ny nodes of the plane
endsec ~ OUTPUT int 4 Time (in s after 00UTC) until which the value
of the variable remains unchanged
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

5.3 Routines to read a source file

A source file contains information about the distribution of the mass flow rate (source term) for
each granulometric class. The number and position of sources may vary with time. See section
6.4 for details on file format.

e subroutine APOLLO_get_source_nsrc
PURPOSE: Gets the number of sources.
SINTAX: call APOLLO_get_source_nsrc (fname, timesec, nsrc, endsec, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file

timesec INPUT int 4 Time (in s after 00UTC) at which data is ex-
tracted

nsrc OUTPUT int 4 Number of sources

endsec ~ OUTPUT int 4 Time (in s after 00UTC) until which the value
of the source term remains unchanged

istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_get_source_nclass
PURPOSE: Gets the number of classes.
SINTAX: call APOLLO_get_source_nclass (fname, timesec, nclass, endsec, istat, message)

35

Variable kind length Description

fname INPUT char any Path (including name) of the file

timesec INPUT int 4 Time (in s after 00UTC) at which data is ex-
tracted

nclass OUTPUT int 4 Number of classes

endsec ~ OUTPUT int 4 Time (in s after 00UTC) until which the value
of the source term remains unchanged

istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_get_source_coordinates
PURPOSE: Gets the coordinates of the sources (nsrc values) on a terrain following coor-
dinate system.
SINTAX: call APOLLO_get_source_coordinates (fname, timesec, x, y, z, endsec, istat, mes-

sage)

Variable kind length Description

fname INPUT char any Path (including name) of the file

timesec INPUT int 4 Time (in s after 00UTC) at which data is ex-
tracted

X OUTPUT real(nsrc) 8 x-coordinates of the source points. It returns
nsrc values.

y OUTPUT real(nsrc) 8 y-coordinates of the source points. It returns
nsrc values.

z OUTPUT real(nsrc) 8 z-coordinates of the source points. It returns
nsrc values.

endsec ~ OUTPUT int 4 Time (in s after 00UTC) until which the value
of the source term remains unchanged

istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO _get_source_value
PURPOSE: Gets the values of the source points (nsrc x nclass values).
SINTAX: call APOLLO_get_source_value (fname, timesec, src, endsec, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file

timesec ~ INPUT int 4 Time (in s after 00UTC) at which data is ex-
tracted

src OUTPUT real(nsrc*nclass) 8 Source values.

endsec ~ OUTPUT int 4 Time (in s after 00UTC) until which the value
of the source term remains unchanged

istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

5.4 Routines to read a granulometry file

A granulometry file contains information about particle classes: granulometry, fraction, density,
and sphericity. It is assumed constant during the whole run. See section 6.3 for details on file
format.

e subroutine APOLLO_get_granulometry_nclass
PURPOSE: Gets the number of granulometric classes.

36

SINTAX: call APOLLO_get_granulometry_nclass (fname, nc, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file
nc OUTPUT int 4 Number of granulometric classes
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_get_granulometry_value
PURPOSE: Gets a granulometric property (nc values).
SINTAX: call APOLLO_get_granulometry_value (fname, word, val, istat, message)

Variable kind length Description
fname INPUT char any Path (including name) of the file
word INPUT char any Code of the property to read. Possibilities are

DIAMETER. Returns diameters (in mm)
DENSITY. Returns densities (in kg/m?).
SPHERICITY. Returns particle sphericities.
FRACTION. Returns mass fractions.

val OUTPUT real(nc) 8 nc values of the property defined by word
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

5.5 Routines to read a wind profile file

A wind profile file contains wind velocity and temperature at different heights and time intervals.
See section 6.2 for details on file format.

e subroutine APOLLO _get_wind_profile_point
PURPOSE: Gets wind properties at a height z.
SINTAX: call APOLLO_get_wind_profile_point (fname, timesec, z, ux, uy, T, endsec, istat,

message)
Variable kind length Description
fname INPUT char any Path (including name) of the file
timesec INPUT int 4 Time (in s after 00UTC) at which data is read
z INPUT real 8 Height at which data is read
ux OUTPUT real 8 Wind z-velocity (m/s)
uy OUTPUT real 8 Wind y-velocity (m/s)
T OUTPUT real 8 Air temperature (in °K)
endsec ~ OUTPUT int 4 Time (in s after 00UTC) until which data is
valid
istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

5.6 Routines to output model results

e subroutine APOLLO _out_model_result2d
PURPOSE: Writes model results (deposit load or thickness) at surface.
SINTAX: call APOLLO_out_model_result2d (fname,header0,headerl,icode,nx,ny,itime,var,istat,message)

37

Variable kind length Description

fname INPUT char any Path (including name) of the file
header0 INPUT char any Free header

headerl INPUT char any Free header

icode INPUT int 4 Variable code. Possibilities are:

0 for TOTAL DEPOSIT LOAD
1 for DEPOSIT THICKNESS
-i for CLASS i DEPOSIT LOAD

nx INPUT int 4 Number of points in the z-direction
ny INPUT int 4 Number of points in the y-direction
itime INPUT int 4 Time (in s) after 00UTC

var INPUT real(nx*ny) 8 Variable to output

istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO _out_model_result3d
PURPOSE: Writes 3D model results (concentration on air).
SINTAX: call APOLLO_out_-model_result3d(fname, header0, headerl, icode, nx, ny, nz,
itime, var, istat, message)

Variable kind length Description

fname INPUT char any Path (including name) of the file
header0 INPUT char any Free header

headerl INPUT char any Free header

icode INPUT int 4 Variable code. Possibilities are:

1 for AIR CONCENTRATION

nx INPUT int 4 Number of points in the z-direction
ny INPUT int 4 Number of points in the y-direction
nz INPUT int 4 Number of points in the z-direction
itime INPUT int 4 Time (in s) after 00UTC

var INPUT real(nx*ny*nz) 8 Variable to output

istat OUTPUT int 4 Execution status. 0 means no error
message OUTPUT char 100 Output message (only if istat # 0)

e subroutine APOLLO_out_model_structuredgrid
PURPOSE: Outputs model geometry for postprocess. Grid is assumed to be structured
with uniform spacings along x and y directions. Spacing along the vertical direction z can
vary.
SINTAX: call APOLLO_out_model_structuredgrid(fname, nx, ny, nz, xo, yo, dx, dy, dz,
top, istat, message)

38

Variable kind length Description

fname INPUT char any Path (including name) of the file

nx INPUT int 4 Number of points in the z-direction

ny INPUT int 4 Number of points in the y-direction

nz INPUT int 4 Number of points in the z-direction

X0 INPUT real 8 x-coordinate (UTM in m) of the origin (bottom
left corner)

yo INPUT real 8 y-coordinate (UTM in m) of the origin (bottom
left corner)

dx INPUT real 8 Grid spacing (in m) along the z-direction

dy INPUT real 8 Grid spacing (in m) along the y-direction

dz INPUT real(nz) 8 Grid spacings (in m) along the z-direction

top INPUT real(nx*ny) 8 Topography

istat OUTPUT int 4 Execution status. 0 means no error

message OUTPUT char 100 Output message (only if istat # 0)

39

6 File formats

6.1 The terrain file format

DESCRIPTION: ASCII file containing terrain information at discrete points of a regular 2D
grid. Points a ordered in lines of constant y, from W to E. In turn, lines are ordered from N to
S. It normally covers a large area (e.g.1000x1000 km). A database may always lay within the
bounds of the terrain file. It must be created by the user or downloaded from the APOLLO
project website.

FORMAT:

Line 1 Free header

Line 2 nx ny xo yo dx dy

Line 3 Free header

Lines 4 to 44+ (nx x ny) xy z ldu zo alb bow shf ahf leaf
where:

e nx: Number of cells in the z-direction.

e ny: Number of cells in the y-direction.

e xo: z-coordinate of the grid bottom left corner (UTM coordinates in m).
e xf: z-coordinate of the grid top right corner (UTM coordinates in m).

e yo: y-coordinate of the grid bottom left corner (UTM coordinates in m).
e yf: y-coordinate of the grid top right corner (UTM coordinates in m).

e z: topography. In m.

e 1du: Land use according to the USGS convention.

e alb: Albedo at point (z,y).

e shf: Soil heat flux at point (z,y).

e ahf: Antropogenic heat flux at point (x,y).

e leaf: Leaf index at point (x,y).

6.2 The wind profile file format

DESCRIPTION: ASCII file containing the definition of the vertical wind profile and air tem-
perature at different time intervals. This file can be read using LIBAPOLLO routines (see section
5.5).

FORMAT:

itimel itime2
nz

2(1) ux(1) ux(1) T(1)

z(.nz) ux(nz) ux(nz) T(nz)

40

where:

e itimel: Starting time (in sec after 00UTC) of the meteo data time slice.

itime2: End time (in sec after 00UTC) of the meteo data time slice.

nz: Number of vertical layers.

z: Vertical coordinate of the layer (in m, terrain following).
e ux: wind z-velocity (in m/s).

e uy: wind y-velocity (in m/s).

T: Air temperature (in °C).

6.3 The granulometry file format

DESCRIPTION: The granulometry file is an ASCII file containing the definition of the par-
ticle classes (a class is characterized by particle size, density and sphericity). This file can be
created by the utility program SETGRANUM and read using LIBAPOLLO routines (see section

5.4).
FORMAT:
nc
diam(1) rho(1) shpe(1) fc(1)
diam(nc) rho(nc) sphe(1) fc(nc)
where:

e nc: Number of granulometric classes.
e diam: Class diameter (in mm).

e rho: Class density (in kg/m?).

e sphe: Class sphericity.

e fc: Class mass fraction (0-1). If must verify that) fc = 1.

6.4 The source file format

DESCRIPTION: The source file is an ASCII file containing the definition of the source term.
The source is defined at time intervals during which source values are kept constant. The num-
ber, position and values (e.g. Mass Flow Rate) of the source points can, however, vary from one
time slice to another. There is no restriction on the number and duration of the time intervals.
It allows, in practise, to discretize any type of source term. This file can be created by the utility
program SETSRC and read using LIBAPOLLO routines (see section 5.3).

FORMAT:

41

MFR

itimel itime2
nsrc nc

xy zsrc(1,1) ... sre(1,nc)

x y z src(nsre,1) ... src(nsre,nc)

where:

e itimel: Starting time (in sec after 00UTC) of the time interval.

itime2: End time (in sec after 00UTC) of the time interval.

nsrc: Number of source points (can vary from one interval to another).

nc: Number of granulometric classes.

MFR: Mass flow rate (in kg/s).

x: x-coordinate of the source isrc (UTM coordinates in m).

y: y-coordinate of the source isrc (UTM coordinates in m).

z: z-coordinate of the source isrc (terrain following coordinates in m, i.e.above the vent).

src: Mass flow rate (in kg/s) of each granulometric class for this point source. It must be
verified that Y > src(isre,ic) = MFR.

6.5 The model output file format

DESCRIPTION: This is a binary file with the results from models. It is assumed that results
are output at the nodes of a regular 2d or 3d grid. Models must output results in this format
if they are be processed by the MODELPOSTP utility. These can be done using LIBAPOLLO
routines (see section 5.6).
FORMAT: The file contains first a model grid block followed by number of results blocks (one
block for each output quantity and time instant in the case of transient models). The model
grid block contains three records with the following quantities:

record 1
record 2
record 3

nx, ny, nz, xo, yo, dx, dy
zlayer(nz)
topg(nx,ny)

whereas each block of results contains 4 records with:

record 1 idime, icode, itime, lenhl, lenh2
record 2 headerl
record 3 header2
record 4 Results

where:

nx: Number of cells in the z-direction.

ny: Number of cells in the y-direction.

42

e xo: z-coordinate of the grid bottom left corner (UTM coordinates in m).
e yo: y-coordinate of the grid bottom left corner (UTM coordinates in m).
e dx: Grid spacing (in m) along the z-direction.

e dy: Grid spacing (in m) along the y-direction.

e zlayer: Coordinates of the grid vertical layers (terrain following in m).
e topg: Topography.

e idime: Spatial dimensions of results. It can be 2 or 3 for results on a plane or in the space
respectively.

e icode: Code for results. Possibilities if idime=2 are:

— icode < 0. Deposit load for granulometric class ABS(icode).
— icode = 0. Total deposit load.
— icode = 1. Deposit thickness.

whereas possibilities if idime=3 are:

— icode < 0. Concentration for granulometric class ABS(icode).

— icode = 1. Total concentration on air.
e itime: Time of results. Given in seconds after 00UTC for the current day.
e lenhl: Length of the headerl.
e lenh2: Length of the header2.

e headerl: Free header for comments. In the models HAzMAP, FALL3Dand TEPHRA con-
tains the description of the results.

e header2: Free header for comments. In the models HAzMAP, FALL3Dand TEPHRA con-
tains the date and time in format YYYY:MM:DD:HH:SSSS.

e results: These are nz x ny real*8 values if idime=2 and nx X ny x nz real*8 values if
idime=3.

6.6 The GRD file format

DESCRIPTION: ASCII grid files (.GRD) contain results in a 2D structured grid.
FORMAT: GRD files contain five header lines that provide information about the size and
limits of the grid, followed by a list of z-values (scalar variable). The fields within ASCII grid
files must be space delimited. The listing of z-values follows the header information in the file.
The z-values are stored in row-major order starting with the minimum y-coordinate. The first
z-value in the grid file corresponds to the lower left corner of the map. This can also be thought
of as the southwest corner of the map, or, more specifically, the grid node of minimum z and
minimum y. The second z-value is the next adjacent grid node in the same row (the same
y-coordinate but the next higher z-coordinate). When the maximum z-value is reached in the
row, the list of z-values continues with the next higher row, until all the rows of z-values have
been included. The general format of an ASCII grid file is:

where:

43

DSAA

nx ny

xo xf

yo yf

zmin zmax
z(1,1) ... z(1,nx)

z(ny,1) ... z(ny,nx)

e nx: Number of cells in the z-direction.

ny:
X0:
xf:
yo:
yf:

Number of cells in the y-direction.

x-coordinate of the grid bottom left corner (UTM coordinates in m).
x-coordinate of the grid top right corner (UTM coordinates in m).
y-coordinate of the grid bottom left corner (UTM coordinates in m).

y-coordinate of the grid top right corner (UTM coordinates in m).

zmin: Minimum value of z in the domain.

zmax: Maximum value of z in the domain.

e z: Value of z at each grid point.

6.7 The symbols file format

DESCRIPTION: ASCII file that contains the symbols and legends added to the PS format
postprocess files. This file is used (optionally) by the program MODELPOSTP and specifies the
coordinates of relevant geographyic features (e.g. cities, airports, etc.). If these fall within the
bounds of the computational domain the program MODELPOsTPadds the legend and the asso-
ciated symbol to the PS files.

FORMAT:

where:

x y legend code flag

x y legend code flag

e x: x-coordinate.

e y: y-coordinate.

e legend: Word that defines the geographyic feature (e.g. Catania).

e code: An integer number that defines the code of the symbol associated to the feature
(see Figure 2).

e flag: Integer flag to switch on/off this particular feature. If flag is 1 MODELPOSTP adds
the feature to the PS file.

EXAMPLE: To add a squared symbol with the legend “Catania” add the following line to the
file: 507000. 4152000. Catania 157 1

60

100

120

140

160

240

260

300

320

[T 2

340

360

&

141

a

161

g

241

®

261

@

301

(8]

321

>
341

=
361

Characters and octal codes for Font ZapfDingbats

62

102

122

142

162

242

262

302

342

C =b N =
363 364 365

362

63

103

123

143

163

243

263

@

303

[0

323

o

343

64

104

124

144

164

244

264

304

324

»
344

66

105 106

125 126

145 146

* ®

165 166

* @

245 246

265 266

305 306

325 326

- =
345 346

67

107

307

327

»

347

70

110

130

150

170

250

270

310

330

»»

350

111

131

112

132

8}
g %

172

272

312

332

352

113

133

114

134

154

174

254

274

314

334

v

354

—

372 373 374 375

336

356

PR VED S D A e
366 367 370 371

376

Iy
337

357

Figure 2: List of symbols.

44

45

7 The default APOLLO tree

Once installed, the apollo directory contains 6 folders: Data, Documents, Master,Models, Pro-
grams, and Runs. The location and names of files created during the execution of programs and
models is set in the scripts (scripts call the programs and pass the full paths of files to be created
as a program call argument). It is recommended to keep the default APOLLOtree structure.
However, if a user wishes to change file names and locations is it sufficient to modify the scripts
accordingly.

—1 Apollo

_1 Data [] Documents [1 Scripts [] Models 1 Programs [] Runs

1. Folder Data. Contains the terrain and meteorological data.

(a) Folder Terrain. Contains the terrain files Area.terrain.dat (see section 6.1) and the
symbols files (see section 6.7).

(b) Folder Mesoscale. Contains the mesoscale meteorological predictions. Each mesoscale
model has its own folder which, in turn, can have different Area folders. The latter
contain the mesoscale meteorological grid for the Mesomodel. Area.mesogrid.dat.

(c) Folder Meteo. Contains the results of the CALMET runs, including CALMET input
and output files. It is not necessary to keep these files since the meteorological data
are, in practice, stored in the database.

(d) Folder Dbs. Contains the meteorological databases. Each area has its own folder
where the database input file Area.dbs.inp for this particular area resides. By default,
periodic (daily) updates are not deleted. Thus, a folder Area. YYMMDD is created
every day (YYMMDD stands for YearMonthDay; e.g. 070120 for January 20th 2007)
to store the database files.

1 Data
—1 Terrain 1 Mesoscale 1 Meteo 1 Dbs
Area.terrain.dat
Area.symbols.dat I:_I Mesomodel I: 1 Area t 1 Area
1 Mesomodel (AMITA4) 1 Area (Sicily) 1 Area (Sicily)
Area.dbs.i
—1 Area 21 Area YYMMDD P
I Area (Sicily) Area.YYMMDD. meso.Ist —1 Area.YYMMDD
Mesomodel.Area. mesogrid.dat Area. YYMMDD.meso.res Area.YYMMDD.dbs
Area. YYMMDD. calmet.geo Area. YYMMDD.dbs.Ist
1 Year Area.YYMMDD.calmet.inp
Area.YYMMDD.calmet.res
1 Year (2007) Area.YYMMDD.calmet.Ist

l— Mesomodel.Area. YYMMDD.HH.grb

46

2. Folder Documents. Contains APOLLO documentation, including this manual.

3. Folder Scripts. Contains the scripts. These files are, obviously, OS dependent.

4. Folder Models. Contains the source codes and the executables of the fallout models and
the program MODELPOSTP. Models added by users should lay in this folder.

_1 Models
1 Fall3d-par 1 Fall3d-ser —1 Hazmap 1 Tephra —1 ModelPostp
— Fall3d-par.exe —— Fall3d-serexe @~ [— Hazmap.exe Tephra.exe — ModelPostp.exe
— [Sources — 1 Sources — 1 Sources L — [Sources L— [Sources

5. Folder Programs. Contains the source codes and the executables of the APOLLO pro-
grams and the library LIBAPOLLO.

—1 Programs
—1 Calmet —1 Dbs —1 SetGm 1 SetSrc —1 LibApollo
— SetGrn.exe — SetSrc.exe — LibApollo.a
— —! Geolnp — I Builddbs '— [Sources — (1 Sources '— 1 Sources
— Geolnp.exe — BuildDbs.exe
L [0 Sources — L1 Sources
— L1 Mesolnp — 1 PostpDbs
— Mesolnp.exe —— PostpDbs.exe
L [Sources — |1 Sources
— |1 CalmetInp
— CalmetInp.exe
— |1 Sources
— 1 Calmet
— Calmet62.exe

— |_1 Sources

47

6. Folder Runs. Contains the runs. Each run has a folder with the run input file and the
results for the different models. By default, periodic (daily) runs are not deleted. Thus, a
folder RunName.YYMMDD is created every day (YYMMDD stands for YearMonthDay;
e.g. 070120 for January 20th 2007) to store the run results.

—1 Runs

_1 RunName 1 RunName (Etna0l)
—— RunName.inp
— |1 RunName.YYMMDD

— L1 RunName.YYMMDD (Ena01.060101)
RunName.YYMMDD.log

1 Model
— 1 Model (Fall3d)

RunNameYYMMDD.model.inp
RunNameYYMMDD.model.src
RunNameYYMMDD.model.res
RunNameYYMMDD.model.lst

— |1 Postprocess

48

8 Application example

The APOLLO package includes an application example to check that the installation and
compilation of the procedure has been done sucessfully. The example considers an eruption
occurring at the first of March 2007 with characteristics similar to those of the paroxystic phase
of the 22 July 1998 Mt. Etna eruption. The files needed to run the example are:

Sicily.terrain.dat (located in the folder Data/Terrain/). This is a terrain file (see section
6.1) for the area of Sicily. Needed by the program GEOINP.

AMITA .Sicily.070301.hh.grb (located in the folder Data/Mesoscale/AMITA /Sicily/2007/).
These are GRIB-format files coming from the AMITA (Aeronautica Militare ITAliana)
mesoscale model, and furnish meteo data from 01 MAR 2007 at 0000UTC to 01 MAR
2007 at 0600UTC. Needed by the program MESOINP.

AMITA Sicily.mesogrid.dat (located in the folder Data/Mesoscale/AMITA/Sicily/). Con-
tains information on the AMITA mesoscale model grid. Needed by the program MESOINP.

Sicily.inp (located in the folder Data/Dbs/Sicily). This is the database input file (see
Table 1) that defines the characteristics of a database named “Sicily”.

Etna.inp (located in the folder Runs/Etna). This is the problem run input file (see Table
3) that defines the characteristics of a run named “Etna’.

To run the example it is necesary to proceed as follows:

1.

2.

Launch the script APOLLO-Build-Dbs-Sicily (located in the folder /Scripts/Dbs) to create
the database Sicily. This script calls the programs GEOINP, MESOINP, CALMETINP,
CALMET, BUILDDBS, and PosTPDBS.

Launch the script APOLLO-Run-Etna (located in the folder /Secripts/Runs) to run the
fallout models.

Figure 3 shows the deposit load predicted by the different models. Figure 4 shows the z-
cummulative concentration predicted by FALL3D at time instants 0100UTC and 0200UTC.

FALL3D: TOTAL DEPOSIT LOAD
Date: 2007:03:01:02:0005

4200000.
4180000.
(fa s
d
\ 8
4160000.
4140000,
4120000,
4100000,
475000. 495000. 515000. 535000. 555000. 575000.
MAX VALUE: 10.28
MIN VALUE: 0.00
TEPHRA: TOTAL DEPOSIT LOAD
Date: TEPHRA
i 4200000.
4180000.
4160000.
4140000.
4120000.
4100000.
475000. 495000. 515000. 535000. 555000. 575000.

MAX VALUE: 5.72
MIN VALUE: 0.00

HAZMAP: TOTAL DEPOSIT LOAD
Date: 2007:03:01:02:0000

475000. 495000.

MAX VALUE:
MIN VALUE:

6.75
0.00

515000.

535000.

555000.

575000.

49

Figure 3: Deposit load (in kg/m?) at 0200UTC. Results for FALL3D, HAZMAP, and TEPHRA.

FALL3D: TOTAL CONCENTRATION ON AIR
Date: 2007:03:01:01:0004

475000. 495000. 515000. 535000. 555000. 575000.
MAX VALUE: 20.958
MIN VALUE: 0.000

4200000.

4180000.

4160000.

4100000.

50

FALL3D: TOTAL CONCENTRATION ON AIR
Date: 2007:03:01:02:0005

Ll | 4200000.

4180000.
4160000.

4140000.

D 4120000.

4100000.

475000. 495000. 515000. 535000. 555000. 575000.

MAX VALUE: 1.159
MIN VALUE: 0.000

Figure 4: FALL3D model. z-cummulative concentration at 0100UTC and 0200UTC.

51

9 References

Arastoopour, H., Wang, C., Weil, S., 1982. Particle-particle interaction force in a dilute gassolid
system. Chemical Engineering Science 37, 1379-1386.

Azad, A., Kitada, T., 1998. Characteristic of the air pollution in the city of Dhaka, Bangladesh
in winter. Atmos. Environ. 32, 1991-2005.

Bursik, M., 2001. Effect of wind on the rise height of volcanic plumes. Geophys. Res. Lett. 18,
3621-3624.

Casadevall, T. J., 1993. Volcanic Ash and Airports - Discussion and Recommendations from the
Workshop on Impacts of Volcanic Ash on Airport Facilities. U.S. Geological Survey Open-File
Report, 93-518, 52 pp.

Chester, D.L., Degg, M., Duncan, A.M., Guest, J.E., 2001. The increasing exposure of cities to
the effects of volcanic eruptions: a global survey. Environ. Haz., 2, 89-103.

Collins, W., Rasch, P., Boville, B., Hack, J., McCaa, J., Williamson, D., Kiehl, J., Briegleb, B.,
2004. Description of the NCAR Community Atmosphere Model (CAM 3.0). Technical Report
NCAR/TN-4644+STR, National Center for Atmospheric Research, Boulder, Colorado.

Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport
and deposition of volcanic ashes. Earth Planet. Sci. Lett., 241 (34), 634-647.

Connor, C.B., B.E. Hill, B. Winfrey, N.M. Franklin, and P.C. LaFemina, 2001, Estimation of
volcanic hazards from tephra fallout, Natural Hazards Review, 2, 33—42.

Dellino, P., D. Mele, R. Bonasia, G. Braia, L. La Volpe, R. Sulpizio, 2005. The analysis of the
influence of pumice shape on its terminal velocity, Geophys. Res. Lett., 32, 1.21306.

Dutton, J., Fichtl, G., 1969. Approximate equations of motion for gases and liquids. J. Atmos.
Sci. 26, 241- 254.

Ganser, G., 1993. A rational approachto drag prediction spherical and nonspherical particles.
Powder Technology 77, 143-152.

Jacobson, M., 1999. Fundamentals of atmospheric modelling, 1st Edition. Cambridge University
Press, New York.

Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and
assessment of subsequent hazard. Computer and Geosciences 31, 837-845.

Pfeiffer, T., Costa, A., Macedonio, G., 2005. A model for the numerical simulation of tephra fall
deposits. J. Volcanol. Geotherm. Res. 140, 273-294.

Pielke, R., Cotton, W., Walko, R., Tremback, C., Nicholls, M., Moran, M., Wesley, D., Lee, T.,
Copeland, J., 1992. A comprehensive meteorological modeling system-RAMS. Meteor. Atmos.
Phys. 49, 69-91.

Small, C., Naumann, T., 2001. The global distribution of human population and recent volcan-
ism. Environ. Haz. 3, 93-109.

Ulke, A., 2000. New turbulent parameterization for a dispersion model in atmospheric boundary
layer. Atmos. Environ. 34, 1029-1042.

52

Wilson, L., and T. C. Huang, 1979. The influence of shape on the atmospheric settling velocity
of volcanic ash particles, Earth Planet. Sci. Lett. 44, 311-324.

Scire, J., Robe, F., Yamartino, R., 2000. A User’s Guide for the CALMET Meteorological Model.
Tech. Rep. Version 5, Earth Tech, Inc., 196 Baker Avenue, Concord, MA01742.

Suzuki, T., 1983. A theoretical model for dispersion of tephra. In: D. Shimozuru, I. Yokoyama
(Eds.), Arc Volcanism: Physics and Tectonics, Terra Scientific Publishing Company (TER-
RAPUB), Tokyo.

